Facile synthesis of nano-Li4 Ti5O12 for high-rate Li-ion battery anodes
نویسندگان
چکیده
One of the most promising anode materials for Li-ion batteries, Li4Ti5O12, has attracted attention because it is a zero-strain Li insertion host having a stable insertion potential. In this study, we suggest two different synthetic processes to prepare Li4Ti5O12 using anatase TiO2 nanoprecursors. TiO2 powders, which have extraordinarily large surface areas of more than 250 m2 g-1, were initially prepared through the urea-forced hydrolysis/precipitation route below 100°C. For the synthesis of Li4Ti5O12, LiOH and Li2CO3 were added to TiO2 solutions prepared in water and ethanol media, respectively. The powders were subsequently dried and calcined at various temperatures. The phase and morphological transitions from TiO2 to Li4Ti5O12 were characterized using X-ray powder diffraction and transmission electron microscopy. The electrochemical performance of nanosized Li4Ti5O12 was evaluated in detail by cyclic voltammetry and galvanostatic cycling. Furthermore, the high-rate performance and long-term cycle stability of Li4Ti5O12 anodes for use in Li-ion batteries were discussed.
منابع مشابه
High capacity Li ion battery anodes using ge nanowires.
Ge nanowire electrodes fabricated by using vapor-liquid-solid growth on metallic current collector substrates were found to have good performance during cycling with Li. An initial discharge capacity of 1141 mA.h/g was found to be stable over 20 cycles at the C/20 rate. High power rates were also observed up to 2C with Coulombic efficiency > 99%. Structural characterization revealed that the Ge...
متن کاملHighly conductive, mechanically robust, and electrochemically inactive TiC/C nanofiber scaffold for high-performance silicon anode batteries.
Silicon has a high specific capacity of 4200 mAh/g as lithium-ion battery anodes, but its rapid capacity fading due to >300% volume expansion and pulverization presents a significant challenge for practical applications. Here we report a core-shell TiC/C/Si inactive/active nanocomposite for Si anodes demonstrating high specific capacity and excellent electrochemical cycling. The amorphous silic...
متن کاملScalable Synthesis of Defect Abundant Si Nanorods for High-Performance Li-Ion Battery Anodes.
Microsized nanostructured silicon-carbon composite is a promising anode material for high energy Li-ion batteries. However, large-scale synthesis of high-performance nano-Si materials at a low cost still remains a significant challenge. We report a scalable low cost method to synthesize Al/Na-doped and defect-abundant Si nanorods that have excellent electrochemical performance with high first-c...
متن کاملUniform nano-Sn/C composite anodes for lithium ion batteries.
Nano-Sn/C composites are ideal anode materials for high energy and power density Li-ion batteries. However, because of the low melting point of Sn and the tendency of grain growth, especially during high temperature carbonization, it has been a significant challenge to create well-dispersed ultrasmall Sn nanoparticles within a carbon matrix. In this paper, we demonstrate an aerosol spray pyroly...
متن کاملControlled synthesis of micro/nanostructured CuO anodes for lithium-ion batteries
: [email protected] Abstract Three different morphology controlled copper oxide materials (porous microspheres, flower-like, and thorn-like CuO) were prepared by facile and environmentally friendly processes, which were further investigated for their electrochemical properties and performance at lithium-ion battery anodes. CuO microspheres were prepared by simply solution chemistry, whereas flow...
متن کامل